grain size the good, the bad ... and the ugly

Renée Heilbronner
renee.heilbronner@unibas.ch

Martin-Luther-Universität Halle, 23. Januar 2023

In this talk, we will follow a fictitious rock through an imagined geological cycle:

- sedimentation
- cementation
- grain growth
- dynamic recrystallization
- fragmentation
- healing

... and observe the associated "grain size"

"grain size" I - sieving

"grain size" 2 - strewn samples

"grain size" 3 - intercept length

closes
average transsected particle width

assumption:
(I) grain volume increase $=74 / 26=1.354$

(2) $d_{\text {cemented }}:$ doriginal $=\sqrt[3]{ } 1.354=1.106$

"grain size" 4 - numerical simulation

grain g

Chen LQ, Yang V
Computer-simula quenched system order parameter
https://www.youtube.com/watch?v=p0rY2r0E_2k
"Grain size":

- arithmetic mean of 2D diameter
- mean/mode of curve fit

"grain size" 5 - thin sections

"grain size" 6 - particle analyzer

$\theta_{c}^{\text {вобой }}$

volume(\%) vs. 3D size

Richter, B., 2017,The brittle-to-viscous transition in experimentally deformed quartz gouge. Dissertation, Basel University. https://edoc.unibas.ch/57805/

"grain size" 7 - multi-scale analysis

fractal dimension for 2 or 3 dimensions

$$
D_{2 d}=D_{3 d}-1
$$

Fractal size distributions should span at least 3 orders of magnitude
grain size ...

why look at grain size?

grain size data carries information
sediments, sands, silts
\rightarrow environment of deposition
statically recrystallized rocks
\rightarrow time and conditions of grain growth
dynamically recrystallized rocks
\rightarrow level of flow stress
crushed rocks, powders
\rightarrow types of fragmentation processes
... etc.

the size of a grain - a scalar

thin sections:
size $=$ diameter, d , of area
area of circle: $A=\pi \cdot r^{2}$

$$
\begin{array}{r}
\Rightarrow d=2 \cdot 2 \sqrt{ }(\mathrm{~A} / \pi) \\
\mathrm{d}=2 \mathrm{r} \text { (lower case) }
\end{array}
$$

loose grains, particles: size $=$ diameter, D , of volume
volume of sphere: $V=4 \pi / 3 \cdot R^{3}$

$$
\begin{gathered}
\Rightarrow D=2 \cdot 3 \sqrt{ }(3 \mathrm{~V} /(4 \pi)) \\
D=2 R \text { (upper case) }
\end{gathered}
$$

the (in)famous 'mean grain size'

arithmetic mean	$\overline{\mathrm{X}}$	$=\mathrm{I} / \mathrm{n} \cdot \sum \mathrm{x}_{\mathrm{i}}$
geometric mean	G	$=\mathrm{n} \sqrt{ } \Pi \mathrm{x}_{\mathrm{i}}$
harmonic mean	H	$=\mathrm{I} /\left(1 / \mathrm{n} \cdot \sum \mathrm{I} / \mathrm{x}_{\mathrm{i}}\right)$
		$=\mathrm{n} / \sum \mathrm{I} / \mathrm{x}_{\mathrm{i}}$
root-mean-square	RMS	$=\sqrt{ }\left(1 / \mathrm{n} \cdot \sum \mathrm{x}_{\mathrm{i}}{ }^{2}\right)$

$$
\begin{aligned}
& \Sigma=\text { sum } \\
& \Pi=\text { product } \\
& \mathrm{i}=\mathrm{I}, \ldots \mathrm{n}
\end{aligned}
$$

$$
\text { RMS }>\bar{X} \geq G \geq H
$$

median
mode
$=x_{(n+1) / 2} \quad$ if $n=$ odd
$=\left(x_{n / 2}+x_{n / 2+1}\right) /$ if $n=$ even
$=$ most frequent value

why 3D ?!

... that's why!

we 'see' 3D, not 2D, modal grain size

number-weighted	
2D mean	$I .31$
2D st.dev.	0.43

\neq visual impression

volume-weighted
3D mode 1.70
3D st.dev. 0.1I

= visual impression

finding the mode by curve fitting

Normal curve fit

$$
\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot \exp \left(-\frac{(\mu-x)^{2}}{2 \sigma^{2}}\right)
$$

Lognormal curve fit

$$
\frac{1}{x \sqrt{2 \pi \sigma^{2}}} \cdot \exp \left(-\frac{(\ln (x)-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Polynomial curve fit

$$
m_{0}+m_{1} x+m_{2} x^{2}+m_{3} x^{3}+\ldots
$$

in all cases: fit through center of bin!

"grain size" | sedimentation sieving

"grain size" I: beach sand

Great Exhibition Bay, NZ
https://www.geological-digressions.com/analysis-of-sediment-grain-size-distributions/
low tide surf zone

coastal foredunes

"Grain size":
Mean $M \varphi=\left(\varphi_{16}+\varphi_{50}+\varphi_{84}\right) / 3$
Sorting $\sigma \varphi=\left(\varphi_{84}-\varphi_{16}\right) / 4+\left(\varphi_{95}-\varphi_{5}\right) / 6.6$ φ equivalent to $\underline{\log (3 D ~ d i a m e t e r) ~}$

from logarithmic to linear

$\Delta \log (D)=$ constant $\Delta D \neq$ constant

vol / $\Delta \mathrm{D}=$ density
blue, green, ... etc. area on $\log (\mathrm{D})$-plot $=$ blue, green,.. etc. area on D-plot
$\operatorname{vol}(D)=$
density function

$\Delta \mathrm{D}=$ constant
Σ area of histogram bars $=$ area under curve $=$ constant

φ-values... - double trouble

> weight\% vs. φ Gaussian normal fit $M \varphi=2.72 \Rightarrow D_{\text {mean }}=0.152 \mathrm{~mm}$
weight\% vs. $\mathrm{D}(\mathrm{mm})$ w\% binwidth corrected overlay = cubic spline fit (10pts)

converting the data

weight\% vs. D(mm) d from cubic spline fit overlay $=$ cubic spline fit (39pts)

weight\% vs. $D(\mathrm{~mm})$ Gaussian normal fit
$D_{\text {mean }}=0.212 \mathrm{~mm} \quad(\sigma=0.130 \mathrm{~mm})$

weight\% vs. $D(\mathrm{~mm}) \mathrm{d}$ from cubic spline fit overlay = cubic spline fit (10pts)

weight\% vs. $D(\mathrm{~mm})$ Gaussian normal fit
$D_{\text {mean }}=0.154 \mathrm{~mm} \quad(\sigma=0.020 \mathrm{~mm})$

φ-derived versus converted

$M \varphi=2.72$
$D_{\text {mean }}=0.30 \mathrm{~mm}$
weight\%.vs. φ
$\Longrightarrow D_{\text {mean }}=0.15 \mathrm{~mm}$

weight\%.vs. φ
$\Longrightarrow D_{\text {mean }}=0.24 \mathrm{~mm}$
weight\%.vs.D(mm)
$D_{\text {mean }}=0.15 \mathrm{~mm}$

$\sqrt[4]{4}$ 논 $D_{\text {mean }}$ from φ

 depends on width of distribution$D_{\text {mean }}=$ mode of vol\%(D)

what have we learned?

Results from sieving are difficult to interpret (... unless you are a sedimentologist ...)

To derive a meaningful mean grain size, φ-values are best converted to vol\% vs. linear size.

Derived $D_{\text {mean }}$ - values depend on standard deviation.

"grain size" 2
 glacial transport strewn samples

"grain size" 2: glacigenic sediments

volume weighting

volume\%

> $D_{\text {mean }}$ from vol\%(D) $\neq D_{\text {mean }}$ from $h(D)$

Note: $D_{\text {projected }}=$ diameter of area-equivalent circle of projected area

what have we learned?

Sands and powders are easily analyzed using a scanner.
In this case, the area-equivalent diameters $\mathrm{d}_{\text {equ }}=\mathrm{D}_{\text {equ }}$ represent the diameters of the volume-equivalent spheres $D_{\text {equ. }}$

No conversion from 2D to 3D is necessary
The conversion from $h(D)$ to vol(D) is trivial: $\operatorname{vol}(\mathrm{D})=h(D) \cdot D^{3}$

"grain size" 3 cementation intercept method

"grain size" 3: cemented sandstone

closest packing $=74 \mathrm{vol} \%$

assumption:
(I) grain volume increase $=74 / 26=1.354$
(2) $d_{\text {cemented }}:$ doriginal $=\sqrt[3]{ } 1.354=1.106$

intercept method - limitations

$$
\text { grainsize }=\frac{\text { length of test line }(\mathrm{L})}{\text { number of transected grains }(\mathrm{N})}
$$

from grain boundaries:
$L=23100 \mu \mathrm{~m}, \mathrm{~N}=22 \mathrm{I}$
size of (grains+cement) $=\mathrm{L} / \mathrm{N}=105 \mu \mathrm{~m}$

for uncemented grains:
??

"Grain size":
mean of intercept lengths
(= $\underline{2 D}$ size, no distribution)
does not work for grains in matrix

check against digital image analysis

check (I) diameters (long axis fit ellipse)
grains from intercept grains from ellipse fit
$105 \mu \mathrm{~m}$
$110 \mu \mathrm{~m}$

check (2) ratios
long axes of fit ellipse:
grains
$110 \mu \mathrm{~m}$
(grains+cement) $\quad 130 \mu \mathrm{~m}$
(grains+cement) : grains = I. $22 \neq|.| |$
area\%
grains
72.9 vol\%
(grains+cement) 100.0 vol\%
(grains+cement) : grains $=1.37 \approx 1.35$

what have we learned?

The intercept method is practical and fast - can be done at the microscope - or on un-segmented micrographs, ... but ...

Only mean the arithmetic 2D mean can be calculated.

Cannot be used for grains in matrix.

"grain size" 4 grain growth 2D experiment

"grain size" 4: Ostwald ripening

grain growth kinetics

Chen LQ, Yang W (I994)
Computer-simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters-the grain-growth kinetics.
Phys Rev B 50: 15752--I5756
https://www.youtube.com/watch?v=p0rY2r0E_2k

"Grain size":
 - arithmetic mean of 2D diameter
 - mean/mode of curve fit

diameter

5700 sqpx
area

grain growth
\rightarrow increasing average size
\rightarrow increasing spread
in terms of normal distribution:
\rightarrow increasing mean (μ)
\rightarrow increasing standard deviation (σ)
\Rightarrow distribution matters

2D simulation

stats $=$ arithmetic mean

statistics for output file d-01.out.txt (data not saved - need to copy from screen):

	mean	st.dev.
statistics of d	19.76689	8.74732
statistics of D	19.70738	8.28300
statistics of V	27.25517	8.04039
statistics of D^{*}	19.70738	8.28300
statistics of $\mathrm{V} *$	27.25517	8.04039

should we convert to 3D...?

what have we learned?

In a fully cemented / fully crystallized rock grain growth has to be volume conserving.

Ostwald ripening is a valid model for such a process: starting with a normally distributed grain size, both the mean and the standard deviation increase with time.

$$
\begin{aligned}
& \text { "grain size" } 5 \\
& \text { dynamic } \\
& \text { recrystallization } \\
& \text { from 2D to 3D }
\end{aligned}
$$

"grain size" 5: sheared quartzite

Heilbronner, R. \& Kilian, R. (20I7). The grain size(s) of Black Hills Quartzite deformed in the dislocation creep regime. Solid Earth, 8, 107I-1093, 2017, doi.org/I0.5I94/se-8-I07I-2017.

$2 D$ versus 3D - mean versus mode

detect second maximum

what have we learned?

Converting 2D grain size data to 3D is highly recommended!

Volume weighted 3D histograms should be used they are free from sectioning artefacts!

Modal 3D grain size identifies the physically most relevant grain size(s).

"grain size" 6

powder
 particle analyzer

"grain size" 6: crushed quartz

Range from $0.2 \mu \mathrm{~m}$ up to $300 \mu \mathrm{~m}$ Mean length is about $65 \mu \mathrm{~m}$ and Mode between 90 and $95 \mu \mathrm{~m}$.

[^0]

Richter, B., 2017,The brittle-to-viscous transition in experimentally deformed quartz gouge. Dissertation, Basel University. https://edoc.unibas.ch/57805/

to get the mean grain size

\neq the mean of log histograms !

mean long axis $=$
$D_{\text {mean }}=17.5 \mu \mathrm{~m}!!$

"mean" long axis $=49 \mu \mathrm{~m}$

evaluated from linear data
 $\Rightarrow D_{\text {mean }}=17.5 \mu \mathrm{~m}$

> | depends on upper and lower bound, |
| :--- |
| only true for $(-0.5 \leq \log (D) \leq 2.3)$ |
| i.e., for $\quad(3 \mu \mathrm{~m} \leq \mathrm{D} \leq 200 \mu \mathrm{~m})!!!$ |

evaluated from log data

mean value of $\log (D)=1.69$
$\Rightarrow D_{\text {mean }}=10^{1.69}=49 \mu \mathrm{~m}$
modal value of $\log (\mathrm{D})=1.95$
$\Rightarrow D_{\text {mean }}=101.95=90 \mu \mathrm{~m}$

Range from $0.2 \mu \mathrm{~m}$ up to $300 \mu \mathrm{~m}$
Mean length is about $65 \mu \mathrm{~m}$ and
Mode between 90 and $95 \mu \mathrm{~m}$.
Richter, B., 2017,The brittle-to-viscous transition in experimentally deformed quartz gouge. Dissertation, Basel University. https://edoc.unibas.ch/57805/

intermezzo: fractal size distributions

F number of fragments created
C number of fragments being fragmented
$f=C / F$ fragmentation fraction
$\mathrm{R}_{\mathrm{i}} \quad$ size (diameter) of fragment
N_{i} number of cracked fragments

Fractal dimension

$$
D=\frac{\log \left(N_{i+1} / N_{i}\right)}{\log \left(R_{i} / R_{i+1}\right)}
$$

published example:
The number N of fragments with cube root of volume greater than r is given as a function of r for broken coal(Bennett, 1936), broken granite from a 61 kt underground nuclear detonation (Schoutens, 1979), and impact ejecta due to a $2.6 \mathrm{~km} \mathrm{~s}^{-1}$ polycarbonate projectile impacting on basalt (Fujiwara et al., 1977). The best-fit fractal distribution from (2.6) is shown for each data set.

Example:

$$
\begin{array}{ll}
\mathrm{F}=8 & \mathrm{R}_{1}=\mathrm{R}_{0} / 2 \quad N_{1}=6 \\
C=6 & R_{2}=R_{0} / 4 \quad N_{2}=36 \\
\mathrm{f}=6 / 8
\end{array}
$$

maximum value for $D=3.00$ - why ?

map views of cube:

$D=0.00$
$D=1.00$
$D=2.58$
$D=3.00$
The fractal distribution $N_{i}\left(R_{i}\right)$ is characterised by a constant ratio $D=\frac{\log \left(N_{i+1} / N_{i}\right)}{\log \left(R_{i} / R_{i+1}\right)} \quad(0 \leq D \leq 3.00)$
$N_{i+1} / N_{1}=$ frequency ratio of smaller to larger grain size $R_{i} / R_{i+1}=$ size ratio of larger to smaller grain size

At the maximum vale of $D=3.0$, the 2 -dimensional fracture surface (grain boundary surface) is completely room-filling, and thus itself a 3-d volume. A higher value than $D=3$ cannot be attained by this process of fragmentation

more from the fractal world

$D_{2 \mathrm{~d}}, D_{3 \mathrm{~d}}, E$ from N / R or $\log (N) / \log (R)$

powerlaw fit to linear data
exponent = D
$D_{3 d}$
$N=R^{\left(-D_{38}\right)}$
$D_{2 d}=D_{3 d}-1$
$N=R^{\left(-D_{2 d}\right)}$
$E=3-D_{3 d}$
$N=R^{(E)}$

linear fit to log data
slope $=D$
$D_{3 d}$
$\log N=-D_{3 d} \cdot \log R$
$D_{2 d}=D_{3 d}-1$
$\log N=-D_{2 d} \cdot \log R$
$E=3-D_{3 d}$
$\log N=E \cdot \log R$

beware: fractal \neq modal distribution

characteristics:

- fractal dimension D
= grain size ratio
- unbounded:
- no minimum, no maximum
- no mean or mode

characteristics:
- moment of central tendency
$=$ most significant grain size
- mean or mode of distribution
- bounded:
- total (area under curve) $=100 \%$

... returning to the talk

what was said in the talk:

- you should correct analyzer vol\% to account for increasing bin width with size: vol $_{\text {corr }}=$ vol\% / bin width
- after calculating N\% from volcorr, N\%
keeping this in mind:
 was plotted versus $\mathrm{D}(\mu \mathrm{m})$ and the powerlaw fit yielded $D_{3 d}>3.0$
how this was explained in the talk:
- the processes of hammering and pestling do not correspond to fractal fragmentation

...doing it right

Therefore
I. Clean original data: Plot $=$ vol\% vs. $\log (\mathrm{d})$
2. Convert to linear bin size: $\mathrm{d}=10^{\log (\mathrm{d})}$
Plot $=$ vol\% vs. $\mathrm{d}(\mu \mathrm{m})$
;3. Correct bin width: volco $=$ vol / in width $*$)
3. Directly
convert vol\% $\rightarrow \mathrm{N} \%$
no\% = vol\% / d ${ }^{3}$
Plot $=\mathrm{N} \%$ vs. $\mathrm{d}(\mu \mathrm{m})$
4. Plot $\mathrm{N} \%$ vs. $\mathrm{d}(\mu \mathrm{m})$ on log-log Fit power-law to full data
5. Fit power-law to cropped ($1 \mu \mathrm{~m} \leq \mathrm{d} \leq 100 \mu \mathrm{~m}$)

what does $\mathrm{D}_{3 \mathrm{~d}}$ mean?

The crystal fragments are broken into small pieces with a hammer and screened with a $100-\mu \mathrm{m}$ sieve.
The coarser fraction is repeatedly pestled and sieved until the overall grain size is less than $100 \mu \mathrm{~m}$.
Bettina Richter (2017) PhD thesis, Basel University

how this is explained:

- the processes of hammering and pestling generate grain size distributions with
$\mathrm{D}_{3 \mathrm{~d}}<3.00$
i.e., compatible with fractal fragmentation processes
- $D_{3 d}=2.24$
(fragmentation fraction $\approx 5 / 8$) for grains $>1 \mu \mathrm{~m}$
- $\mathrm{D}_{3 \mathrm{~d}}=1.1 \mathrm{I}$
(fragmentation fraction $\approx 2 / 8$)
for grains $<2 \mu \mathrm{~m}$
(below grinding limit)

what have we learned?

Data from particle analyzers are particularly prone to misinterpretation.

The mean of a fractal distribution is quite meaningless.
Rather, convert analyzer data to linear histograms of volume density versus linear size...
... and check on a log-log plot of N.vs.size:
if the slope, D , of the powerlaw fit is a straight line, and if ($0 \leq-\mathrm{D} \leq 3$), the distribution may be due to fractal fragmentation.

"grain size" 7
 friction \& healing fractal dimension

"grain size" 7: brittle fault rocks

fractal dimension for 2 or 3 dimensions

$$
D_{2 d}=D_{3 d}-1
$$

... but fractal size distributions should span at least 3 orders of magnitude

comparing grain size distributions

2

$y=$ number (\%)
$\mathrm{x}=$ bins of $3 \mathrm{D} \mathrm{d}(\mathrm{mm})$

all plotted as vol\% vs. linear D

typical data ranges

Keulen, N., Heilbronner, R., Stünitz, H., Boullier, A.-M. and Ito, H. (2007). Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids, J. Struct. Geol., 29, I282-I 300, doi: 10.1016/j.jsg.2007.04.003.

the 'universal' fractal dimension

Keulen, N., Heilbronner, R., Stünitz, H., Boullier, A.-M., Ito, H. (2007). Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids, Journal of Structural Geology, 29, I282-I 300, doi: $10.1016 / j . j s g .2007 .04 .003$.

intermediate

gouge

$$
\begin{array}{|l|l|}
D_{3 \mathrm{~d}} \text { cracked } & =\sim 2.5 \\
D_{3 \mathrm{~d}} \text { gouge } & =3.0-3.2!! \\
D_{\text {<grinding limit }} & =1.8-2.0
\end{array}
$$

$D_{3 d}$ gouge $\neq f($ displacement $)$

high velocity friction experiments (rotary shear apparatus)

Stünitz, H., Keulen, N., Hirose,T., Heilbronner, R. (20IO). Grain size distribution and microstructures of experimentally sheared granitoid gouge at coseismic slip rates - criteria to distinguish seismic and aseismic faults? J. Structural Geology, 32, 59-69, doi: $10.1016 / \mathrm{j} . \mathrm{jsg}$.2009.08.002

experimental and natural fault rocks

experimentally produced fault rock \longleftrightarrow naturally produced fault rock

Keulen, N., Heilbronner, R., Stünitz, H., Boullier, A.-M., Ito, H. (2007). Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids, Journal of Structural Geology, 29, I282-1300, doi:10.1016/j.jsg.2007.04.003.

rupture - faulting - healing

deformation and healing experiments

fresh

healed

"A hydrostatic healing law for qtz and fs: $\Delta D(t)=D(t)-D_{f}=A \cdot e^{(-\lambda t)}$,
\Rightarrow Healing of monomineralic gouge:
in ~ 1 year at $\mathrm{T}=100^{\circ}-200^{\circ} \mathrm{C}$."

Nojima Fault

natural fault rocks

healed

Keulen, N., Stünitz, H., and Heilbronner, R. (2008). Healing microstructures of experimental and natural fault gouge. Journal of Geophysical Research-Solid Earth II3.

what have we learned ?

The fractal dimension of freshly fragmented rocks seems to be a 'universal': $\mathrm{D}_{3 \mathrm{~d}}=2.58$.

Mature gouge is 'supra-fractal' with a saturation values of $D_{3 d}>3.00$, indicating the contribution of nonfractal processes (spalling, abrasion), and is independent of the amount of displacement.

Healing of monomineralic fault rocks (gouge)
yields $D_{3 \mathrm{~d}}=2.58$; healing is very fast (on the order of years); for polymineralic rocks $\mathrm{D}_{3 \mathrm{~d}}$ remains >3.

in summary ...

we have considered ...
I. what φ-values mean in the physical (linear) world
2. the usefulness of a flatbed scanner
3. the fast and easy intercept method
4. if $d_{\text {mean }}$ from 2D simulations can be extrapolated to 3D
5. how to convert $\mathrm{d}_{\text {mean }}$ from 2D sections to $\mathrm{D}_{\text {mean }}$ in 3D
6. how to derive fractal dimensions from particle analyzers
7. that fractal grain size distributions have no mean

... and we found that

for any given distribution of grains ...
the arithmetic mean of $h\left(d_{\text {equ }}\right)$
\neq mean of $h\left(D_{\text {equ }}\right)$
\neq mode of vol\%($\left.D_{\text {equ }}\right)$
$\neq M \varphi$
\neq mean of vol\%($\left.\log \left(D_{\text {equ }}\right)\right)$
\neq... etc.
see data from:
image analysis
scanner
stripstar
sieving
particle analyzer
\Rightarrow ask yourself:
which "grain size" you need to know

grain size 3D, 2D

and fractal

Renée Heilbronner
renee.heilbronner@unibas.ch

Martin-Luther-Universität Halle, 23. Januar 2023

[^0]: "Grain size":
 mean or mode of \log (3D size) (e.g., long axes of particles)

 - arithmetic mean
 - mean/mode of curve fits

